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Summary. In electronic structure calculations requiring the handling of large 
amounts of integrals, storage requirements can often be reduced through the use of 
localized orbitals which gives rise to sparse integral arrays. However, conventional 
Moller-Plesset perturbation theory is constrained to canonical orbitals due to the 
explicit use of orbital energies in the energy expressions, and it is therefore not 
straightforward to reduce the storage requirements through such orbital localiza- 
tion. This work shows how the constraint of canonical orbitals can be lifted using 
a Laplace transform technique, and investigates the reduction in storage require- 
ment that can result from the localization of orbitals made possible by such an 
approach. 
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1 Introduction 

Recent developments of direct methods I-1 3-1 for electronic structure calculations 
have allowed the application of rigorous ab initio theory to molecules of a size 
which was unthinkable only a few years ago I-4]. Direct methods have now been 
implemented both in Har t ree-Fock and in several correlated schemes [1-3, 53. 
However, even with direct methods, the steep scaling of correlation methods 
remains a bottleneck for routine calculations of large molecules. This problem is 
even encountered at the simplest correlated level, second-order MMler Plesset 
perturbation theory (MP2), which scales as N s. In this method, the transformation 
time for medium-sized systems is often overshadowed by the integral evaluation 
time, which has a lower power dependence but a much larger prefactor. For  large 
systems the time is dominated by the transformation, due to its nominal N 5 
dependence and the absence of any significant benefit from integral prescreening in 
that part of the calculation. 

1 Present address: Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA. 
2 Deceased, January 17, 1996. 
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To extend calculations such as these to large systems, methods which result in 
sparse arrays of transformed integrals are of great interest, as this would allow 
significant compression of the integrals. Localization of the orbitals can accomplish 
such sparsity, resulting in savings in the storage requirement as well as in CPU 
time. However, the standard formulation of Moller-Plesset theory refers to canon- 
ical orbitals, and prevents any simple localization. 

Fortunately, there are available methods which circumvent this canonical 
formulation, allowing localization of the orbitals to be utilized. One such approach 
used to reduce storage bottlenecks is the local correlation scheme developed by 
Saebo and Pulay [6]. As applied to MP2, a form of the MP2 expression is used 
which is invariant to rotations among the occupied and virtual orbitals. The 
occupied space is localized by conventional means, and the virtual space used to 
correlate each occupied pair is defined as the subspace of the atomic orbitals that 
are spatially close to the localized occupied orbitals. While this method has 
undisputed promise for treating large systems, it is difficult to strictly monitor  the 
accuracy of the approximation made in the truncation of the virtual space to a 
subset of the AO basis [7]. 

Here, we discuss a similar method which reduces the virtual space based on 
rigorous integral thresholds, allowing the approximation to be strictly monitored 
with regard to its effect on the final total energy. We use the Laplace formulation 
[8, 9] in order to provide an invariant form of the MP2 expression which is 
described in the following section. Additionally, we have investigated several 
localization schemes and screening criteria, and examined their effectiveness in the 
context of Laplace MP2 [10]. 

2 Laplace transform techniques 

The second-order correction to the electronic energy can be expressed in a spin 
orbital formalism as 

E ( 2 )  = _ _  . . . .  1 ~ (ab [] i j)  2 , (t) 

4 i j a b  ~a -}- ~'b - -  ~i  - -  t?,d 

where 

(ab [1/j) = (ab I/j)  - (ab I j i ) ,  (2) 

( a b l i j )  = f 0 . (1 )  ~t~(2) --ra21 ~i(1)0j(2)dx ~ dxz; (3) 

i,j, ... denote occupied molecular orbitals, and a, b, ... denote virtual orbitals. In 
order to lift the constraint of canonical orbitals, the energy denominators in Eq. (1) 
can be rewritten using a Laplace transform [8, 9] 

(e, + eb -- ei -- e~) - I = e-0:. + ~ - ~:, - ~.At dt 

and the correlation energy can thus be expressed as 

(4) 

E (2) = e(2)(t)dt, (5) 
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where 

1 
e(2)(t) = - ~ ~ ( a b  [I iJ)  2 e-(~° + ~ -  " ~)t (6) 

i jab 

So far, little has been gained compared to the original expression (1). However, 
with this new formulation of the correlation energy, e ¢z) can be written in terms of 
t-dependent orbitals and integrals. To accomplish this, a t-dependent scaling of the 
orbitals is introduced as follows: 

¢,(t) = ~/,(0) e ":/z (7) 

for the occupied orbitals, and 

Oo(t) = O . ( 0 )  e . . . . .  ~/: (8 )  

for the virtuals, e (2) can now be written as 

1 
e(2)(t) = -- ~ 2 (a( t )b( t ) I t  i ( t ) j ( t ) )  2- (9) 

ijab 

Equation (9) is invariant under unitary rotations within both the occupied and the 
virtual orbital space of scaled orbitals [t 1], and this invariance can be exploited 
to localize the orbitals, leading to improved sparsity of the transformed integral 
arrays and reducing the number of integrals that must be stored. 

3 Numerica l  quadrature 

For the final evaluation of the correlation energy (5), a numerical quadrature 
scheme must be used. Fortunately, the function e(z)(t) in Eq. (9) is well behaved and 
monotonically decreasing, as illustrated in Fig. 1 for a calculation on p-chloro- 
phospha-benzene. In fact, for most systems e (2) is virtually indistinguishable from 
a simple exponential function, and one would therefore not expect the numerical 
integration to be a major computational obstacle. 

In principle, any quadrature scheme could be used for the evaluation of 
Eq. (5), but in the interest of efficiency we seek one with the minimum number of 
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e( 2~ (t) 
Fig. 1. An illustration of the decay of 
the function et2)(t) with the value of t, 
demonstrating why an efficient 
quadrature scheme can be designed 
so easily. The figure shows d2)(t) for 
p-chloro-phospha-benzene. The 
optimum quadrature points are also 
indicated 
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quadrature  points (since a complete integral transformation must be carried out for 
each point). In a conventional numerical quadrature scheme the integral would be 
approximated with a quadrature in n points as 

1 
- ~ w~e -~o~'~, ( 1 0 )  

X a b i j  o: = 1 

where we have used x.bi~ = ea + eb - e~ - e~, and where the quadrature points t~ 
and weights w~ can be optimized in order to find the best fit for 1 /x .  This is done 
using a least-squares approximation 

-- w~e -~"~J~ = min!.  (11) 
i j a b  ct = 1 

The procedure can thus also be viewed as an approximation of 1 / x  with a basis set 
expansion in exponential functions. Clearly, it is sufficient for the approximation to 
be accurate over an interval ranging from Xm~, = min(x~b~j) to X .... = max(x,b~i). 

- -  w~e -~'° dx = min!. (12) 
rain ~ = 1 

The weights w, can be determined for each of the exponential factors t~ by solving 
the equation 

g w  = a ,  (13) 
where 

g Xmax 1 
a~ = | - e - ~ t ' d x ,  (14) 

J Xmln "3~ 

f l  max B~ = e-~(t'+t~)dx. (15) 
nl[a 

The opt imum exponents t~ can be determined with a similar, non-linear least- 
squares procedure. The final expression for the MP2 energy is thus 

E (2) ~ w~ e(2)(t~) = - -~ w~ (a ( t~ )b ( t~ ) I I  i ( t~)J( t~))  2 , (16) 
c~=l i '  a = l  

with e ~2) evaluated as in Eq. (9). A detailed discussion of these methods is given in 
Ref. [9]. 

4 Laplace transforms in MP2  calculations 

As test cases of the quadrature  scheme, fluorobenzene and fluoronaphthalene were 
chosen. For  an unbiased comparison, point group symmetry was not used in the 
integral evaluation or transformation. The calculations were performed in a D Z P  
basis set [12] with the core orbitals uncorrelated. 

The number  of points required to achieve a certain accuracy in the correlation 
energy was determined by optimizing the fit in Eq. (11) using a Mathemat ica  
procedure [13]. In the evaluation of Eq. (5), Xmln and Xm~x correspond to twice the 
H O M O - L U M O  and L O M O - H U M O  intervals, respectively. The resulting points 
and weights {t~, w~} for fluorobenzene are given in Table 1, while Table 2 presents 
the corresponding data for fluoronaphthalene. 
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The MP2 energies obtained using the quadrature (13) with the data from Tables 
t and 2 are reported in Table 3 for fluorobenzene and fluoronaphthalene. Addi- 
tionally, the error as compared to the conventional contribution is provided. 
Clearly, milli-Hartree accuracy can be obtained with only four quadrature points. 
(The lack of perfectly monotonic convergence with increasing n is due to the fact 
that the fit (Eqs. (11) and (12)) does not take the integral values and the distribu- 
tions of x,bij into account. Thus, while the fit of 1Ix to the sum of exponentials 
always improves monotonically - in a least-squares integral sense - with increasing 
n, the approximation in Eq. (16) is not guaranteed to do so. Ultimately, as n grows 
beyond limits convergence is of course always guaranteed.) 

In order to simplify the approach, we examined the possibility of using one 
unique set of quadrature points for a number of systems. We used the set of eight 
quadrature points developed in Ref. [9] for the medium-sized system p-chloro- 
phospha-benzene in calculations on the six systems fluorobenzene, fluoronaphtha- 
lene, fluoroanthracene, fluoronaphthacene, fluoropentacene, and fluorohexacene. 
A STO-3G basis [14] was used for all these systems since it allowed access to 
extended systems at a low cost, and since agreement with experimental results was 
not an issue here. As shown in Table 4, using one set of quadrature points for 
various systems is definitely a viable approach. Even for the largest test system, 
fluorohexacene, milli-Hartree accuracy is achieved with eight quadrature points 
or less. 

Table 3.  M P 2  energies and relative errors t b r  a varying number of quadrature points n for fluoroben- 
zene and fluoronaphthalene. A D Z P  basis was used 

n Fluorobenzene Fluoronaphthalene 

Correlation energy Relative error Correlation energy Relative error 

1 - -  1 . 0 6 0 0 9 9  1 .3  x 1 0 - I  - -  1 . 6 4 2 2 0 1  1 .3  x 1 0 - 1  

2 - 0 , 9 3 1 2 5 6  8 . 9 x  1 0  . 3  - -  1 . 4 5 3 2 1 6  2 .1  x 1 0  3 

3 - -  0 , 9 3 4 5 0 5  5 . 4  x 1 0  - 3  - 1 , 4 4 4 8 2 8  7 . 9  x 1 0  . 3  

4 - 0 . 9 3 9 4 3 8  2 .1  x 1 0  - 4  - 1 . 4 5 5 3 7 7  6 . 4 x  10  - 4  

5 - 0 . 9 3 9 6 1 9  1 .5  x 1 0  - s  - 1 . 4 5 6 0 3 2  1.8 x 1 0  . 4  

6 - 0 . 9 3 9 5 8 7  4 . 9  x 1 0  - 5  - 1 . 4 5 6 1 0 5  1 .4  x 1 0  4 

7 - 0 . 9 3 9 6 3 1  1 .9  x 1 0  - 8  - 1 . 4 5 6 2 3 9  4 . 3  x 10  - s  

8 - -  0 . 9 3 9 6 8 3  5 .3  x 1 0  - 5  - -  1 . 4 5 6 2 6 9  2 .3  x 1 0  . 3  

Exact - 0 . 9 3 9 6 3 3  - -  - -  1 . 4 5 6 3 0 2  

Table 4. Conventional MP2 correlation energy contributions (in mEh) and the error 
(absolute) i n  a L a p l a c e  M P 2  calculation using eight quadrature points 

Molecular system Conventional MP2 Error with Laplace M P 2  

Fluorobenzene - 3 4 7 . 2 4 6 9 0 8  4 . 7 0  x 1 0 -  5 

Fluoronaphthalene - 5 9 0 . 1 2 1 0 9 2  2 . 7 5  x 10  - 4  

Fluoroanthracene - 8 3 4 , 8 8 2 2 6 7  1 . 2 2  x 10  - 2  

Fluoronaphthacene - -  1 0 7 6 . 1 9 8 4 8 0  4 . 8 0  x 10  . 2  

Fluoropentacene - -  1 3 1 5 . 8 7 6 4 4 3  1 , t 2  x 1 0 - 1  

Fluorohexacene - -  1 5 5 6 . 0 0 3 7 7 0  2 . 0 3  x 1 0 - 1  
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Still, the best accuracy with the least number of points is expected if the points 
and weights are actually determined for the system under consideration. It must be 
determined on a case-by-case basis if an optimum quadrature for each system is 
worth the extra effort of determining specific quadrature points and weights for the 
orbital energy interval in question. Obviously, the success of the above simplified 
approach hinges on the fact that the {Xmin, Xmax} interval of the system for which 
the quadrature points and weights were determined covers that of all the systems 
that were actually studied. If the system under consideration has x~blj values in 
a range for which no particular accuracy of the approximation (t 1) is guaranteed 
by the least-squares procedure, one cannot expect reliable results. 

The numerical evaluation of the invariant MP2 expression requires an indi- 
vidual evaluation and integral transformation for each quadrature point. For 
instance, using an eight-point quadrature requires going through the transforma- 
tion eight times. Simply using the Laplace formulation will therefore increase the 
number of integrals that must be evaluated and processed by that factor. However, 
the invariant property of the expression allows localization of orbitals which will 
reduce the number of large integrals that must be handled, hopefully, even beyond 
the number in canonical MP2. 

5 Localization methods 

To exploit the invariance of Eq. (9) for reducing storage and simplifying the 
calculations, the orbitals need to be localized. Any reasonable localization of the 
orbitals is likely to increase the sparsity of the integral arrays, and can thus be 
useful for reducing storage requirement (and perhaps also CPU-requirement). 
However, in order to maximize the sparsity of the integral arrays, localization 
methods that specifically provide the maximum number of negligible two-electron 
integrals (i j lab) should be sought. For large systems the coulomb-type terms 
(ijJ ab)(ijl ab) in the MP2 energy expressions are typically more significant in 
terms of size than the exchange-type terms (ijl ab)(ij] ba), and in the present work 
we focus on localization schemes which address the former. 

For the localization of occupie d orbitals, several standard schemes have been 
proposed in the literature [15-17] and the choice between these has little impact on 
the performance of the present approach. For efficiency reasons the Boys method 
[15], which localizes orbitals based on orbital centroids, and the Pipek-Mezey 
method [17] based on gross atomic populations, have been used in the present work. 

For the localization of virtual orbitals, different approaches were also used. 
A simple Boys localization of the full virtual orbital space is referred to as a global 
approach. In addition, two "local" approaches have been investigated, both of 
which can be viewed as modifications of the Edmiston-Ruedenberg approach [16]. 
In the first, a separate localization of the entire virtual orbital space is performed 
for every unique pair of occupied orbitals, and in the second, the entire virtual 
space is localized for each particular occupied orbital. The coulomb-like part of the 
correlation energy 

(abli j)  2 (17) 
ab 

is invariant under unitary rotations of the virtual orbitals, and a large number of 
small terms in the sum thus necessitates a few large ones. Accordingly, a localiza- 
tion technique that provides either large or negligible (ab I ij) is of interest. A sum 
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of the squares of these terms is not invariant, and maximizing such a sum would 
have the desired effect of creating either large or negligible terms in Eq. (17). In the 
present work we have used a method which maximizes the sum of squares of the 
coulomb-type term for each unique pair of occupied orbitals 

Ri~ = ~ (ab[ i j)  4 . (18) 
ab 

The virtual orbitals which maximize Rii are determined by using a standard 
Newton-Raphson procedure to optimize an exponentially parametrized unitary 
transformation [18]. This requires an iterative procedure. Since a full localization 
must be carried out for each occupied pair, a diagonal approximation to the 
Hessian is used in the Newton scheme for reasons of computational economy. 
The approximate nature of this approach does not affect the final result as long as 
the scheme converges, but it can affect the rate of convergence. 

Orbitals are rotated one pair at a time (2 x 2 rotations) as in other localization 
schemes [16] rather than using the entire U matrix to accomplish the localization. 
Rij is successively maximized for each chosen pair of orbitals. This iterative 
procedure converges to a maximum in the same way as a Jacobi diagonalization 
procedure. 

In a simplified version of this scheme, the virtual space is localized with respect 
to a single occupied orbital. This also provides small differential overlaps between 
occupied and virtual orbitals, even though the ( ab l i j )  integrals are not addressed 
directly. In analogy with the previous method, the expression 

~ (aa] i i)  (19) 
a 

is invariant under unitary transformations of the virtual orbitals, and a maximiza- 
tion of the sum of squares 

Ri = ~, (aa[ i i )  2 (20) 
a 

thus provides many small contributions to Eq. (19). Again, a Newton-Raphson 
approach has been used to maximize Ri. In this scheme, however, it is not cost 
prohibitive to use the full Hessian since fewer localization steps are needed and 
since the Hessian only has N 3 independent terms rather than N 4 as in the previous 
scheme. Further details of these methods are provided in Ref. [18]. 

6 Localization in a Laplace scheme 

The convergence behavior of the virtual localization with respect to each occupied 
orbital pair is illustrated in Fig. 2 for the three smallest test systems. Shown is the 
number of large contributions ( > 10- 8 Eh) at convergence cutoffs of 200, 1000, and 
6000 2 x 2 rotations for each occupied orbital pair. The cutoffs are used to keep the 
calculation from becoming too expensive in terms of CPU time. The number of 
2 x 2 rotations for this method, illustrated in Table 5, is comparable to the number 
required in the occupied orbital localization. A localization of the occupied orbitals 
for fluorobenzene requires over 30 cycles where each cycle includes 18 2 x 2 
rotations. For  large r~ values most of the orbitals are scaled down to insignificance 
and their localization encounters numerical challenges which has lead to the 
increased number of 2 × 2 rotations seen in Table 5. According to Fig. 2, the 
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Fig. 2. Number of large contributions ( > 10 s) for fluorobenzene, fluoronaphthalene, and fluoroan- 
thracene after 200, 1000, and 6000 2 x 2 rotations 

Table 5. Number of iterations required for the convergence of the localization procedure at each 
quadrature point t of Eq. (16). Listed below are the results for fluorobenzene (FB), fluoronaphthalene 
(FN), and fluoroanthracene (FA), using both Boys localization and population localization schemes. 
The results for both occupied and virtual orbitals are reported for Boys method. Each iteration 
represents N 2 x 2 rotations where N is the number of orbitals that are being localized 

Population Boys 

Occupied orbitals Occupied orbitals Virtual orbitals 

N = 1 8  N = 2 7  N = 3 6  N = 1 8  N = 2 7  N = 3 6  N = 1 5  N = 2 4  N = 3 3  
FB FN FA FB FN FA FB FN FA 

1 34 46 65 417 263 229 63 85 137 
2 34 46 63 414 260 221 79 92 142 
3 32 54 61 339 218 177 61 95 140 
4 32 47 70 202 105 147 57 90 154 
5 34 51 67 72 105 136 75 70 130 
6 40 57 81 67 98 417 47 108 138 
7 64 93 135 63 160 372 48 102 155 
8 193 253 674 157 201 > 1000 81 149 492 

l o c a l i z a t i o n  for  f l u o r o b e n z e n e  c o n v e r g e s  w i th in  200 2 x 2 r o t a t i o n s  tor  each  v i r tua l  
l o c a l i z a t i o n  as c o m p a r e d  to  nea r ly  600 for  the  o c c u p i e d  loca l i za t ion .  T h u s  the  
c o n v e r g e n c e  b e h a v i o r  of  this  s c h e m e  is c o m p a r a b l e  to  t h a t  of  o c c u p i e d  o rb i t a l  
schemes ,  t h o u g h  the  r e q u i r e m e n t  of  an  i nd iv idua l  l oca l i z a t i on  for  each  u n i q u e  pa i r  
of  o c c u p i e d  o rb i t a l s  necess i t a t e s  t he  use of  c o n v e r g e n c e  cutoffs.  

In  Fig.  3, a c o m p a r i s o n  of  t he  n u m b e r  o f  s ign i f ican t  c o n t r i b u t i o n s  in c o n v e n -  
t i ona l  M P 2  to t h o s e  in L a p l a c e  M P 2  for  the  six test  sys tems  is shown .  A c o n t r i b u -  
t i on  is de f ined  as a s ingle  t e r m  in the  s u m s  (1) and  (16), respect ive ly .  Clear ly ,  the  
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Fig. 3. The number of large contributions to the MP2 energy for Laplace MP2 with canonical orbitals 
(LMP2), with localized occupied orbitals (LMP2(Occ)), Laplace MP2 with globally localized occupied 
orbitals and virtual orbitals (LMP2(Occ + Virt(global))), and Laplace MP2 with localized occupied 
orbitals and virtual orbitals localized with respect to occupied orbital pairs (LMP2(Occ + Virt(i,j)). The 
molecules studied (1RING-6RING) are the same as in Table 4 

localization of the occupied orbitals reduces the number of significant contribu- 
tions, but there are still more significant contributions than for conventional MP2 
due to the repeated evaluation for each quadrature point. For  the larger systems, 
the numbers are approaching the levels for conventional MP2. 

Along with the localization of the occupied space, several virtual localization 
schemes were used. The first of these was a Boys "global" localization of all the 
virtual orbitals. The results are shown in Fig. 3, along with those of the previous 
methods. Fluoronaphthacene is the first test system where the number of large 
contributions has been reduced beyond those in conventional MP2. The savings 
become even more substantial for larger systems as shown. 

However, it is desirable to have as few large contributions as possible, so 
attempts were made to achieve even more substantial savings by using techniques 
designed to localize the virtual orbital space specifically for each occupied pair. As 
shown in Fig. 3, fluoronaphthalene is the first test system where this method results 
in fewer large integrals than conventional methods. The number of large contribu- 
tions is reduced even beyond the reduction in the global virtual method. However, 
the results for the global virtual method approach those for the virtual localization 
with respect to occupied orbital pairs for fluorohexacene. There are a couple of 
possible reasons for this. First, a cutoff of 200 2 x 2 rotations was used for the 
virtual localization with respect to occupied orbital pairs. As shown in Table 5, 
the localization in the larger systems is less well converged at a fixed number of 
rotations. Another possibility is that localized occupied and virtual orbitals are 
more likely to be far apart even with a "global" localization scheme as a system size 
increases. Thus, the result for fluorohexacene could reflect the decreasing import- 
ance of the type of method used to localize the orbitals. 

The results from the virtual localization with respect to an individual occupied 
orbital are somewhat surprising. Because this technique specifically addresses the 
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differential overlaps, this method was expected to result in fewer large contribu- 
tions than for the Boys localization of the virtual orbitals. This method was also 
expected to result in slightly more large contributions than for the localization with 
respect to occupied orbital pairs. As illustrated in Fig. 4, the number of large 
contributions for this method is less than the number for a global localization of the 
virtual orbitals. However, for ftuoronaphthalene, using a virtual localization with 
respect to a single occupied orbital resulted in only approximately 3% fewer large 
contributions than the global localization of the virtual orbitals. Because of the 
additional work and additional space required for this method over that required 
for global localization, the latter is the much more viable option. Larger systems 
were not tested with this method. 

From these results, it appears that the virtual localization with respect to 
occupied orbital pairs produces the smallest number of large contributions. Thus, 
the greatest reduction in storage requirements would result from this method. In 
practice, however, the cost of this technique is prohibitive as it does scale as N s. If 
the scaling could be reduced, or if a less expensive approximation to this approach 
could be used, then this method would be a viable approach. 

7 Integral screening 

In order to make use of the sparsity provided by the localization, effective pre- 
screening of two-electron integrals is needed. For  this, an estimate of the magnitude 
of the transformed and untransformed integrals is necessary. There are several 
ways in which a four-center integral can be approximated with two-index quanti- 
ties, the most powerful of which is one based on the Schwartz inequality [19]. For  
the present purpose, however, it is preferable to work with a simpler estimate using 
radial overlaps. It is straightforward to show that a four-center, two-electron 
integral over Gaussian basis functions can be written as [20] 

(p r l  q s )  = Spq Svs Opqrs , (21) 
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Fig. 4. A comparison of global and individual localization of virtual orbitals for fluorobenzene and 
fluoronaphthalene. Boys localization was used for the global localization scheme 
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where Spq is a radial overlap between basis functions p and q, and Orqr s is slowly 
varying angular factor. Approximating an AO integral in this spirit, 

(pr]qs) ~ Spq Srs, (22) 

the radial overlap product  can be transformed exactly as the AO integral, and the 
various combinations of radial overlaps, partially transformed radial overlaps, and 
fully transformed radial overlaps can be used as test criteria. For  instance, in the 
first step of the transformation where the AO integral (pr t qs) is transformed to 
(pr I qJ), 

(prl qj)  = ~, C=j (prl qs), (23) 
s 

the criterion on whether the (pr lqj )  integral needs to be evaluated is given by 
a radial overlap multiplied by a partially transformed overlap (using absolute 
values of the molecular orbital coefficients) 

(prlqj)  ~ Spq Sr~. (24) 

Such a screening criterion can also of course be used in conventional MP2, but the 
delocalized nature of canonical orbitals certainly would greatly limit its usefulness. 

To investigate the effect of integral screening, linear chains of water molecules 
were used as test systems. Calculations were done on up to six water molecules 
separated by a distance of 5 A, using a DZ basis. In the largest calculation, over 
94% of the two-electron integrals (prlqj)  were eliminated with a threshold of 
10- 7. With thresholds of 10- s, 78% of both the (pr[ bj) and the (pi[ bj) integrals 
were avoided, while approximately 25% of the final (alibi) fell below a threshold 
of 10-lo.  The thresholds were chosen to produce approximately the same error 
( ~  10-7 Eh) at all levels of screening, and the different thresholds obtained reflect 
the fact that  the errors made in the first steps contribute randomly to the error in 
the final total energy, whereas the (all bj) integrals contribute with a preferential 
sign. The average fraction of integrals eliminated in these calculations is shown in 
Fig. 5. The trend clearly indicates that even more substantial screening is to be 
expected in larger systems. However, due to the systematic nature of the error 
caused by the neglect of the final (aiI bj) integrals, it is expected that the thresholds 
for the last par t  of the transformation will have to be tightened as the size of the 
system increases. 
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Fig. 5. Average screening in MP2 for 
chains of water molecules, using a DZ 
basis. The separation of molecules is 5 ,~. 
The resulting energy errors are less than 
0.5 ~tEh. N represents the total number of 
partially and fully transformed two- 
electron integrals in the calculation 
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8 Conclusion 

W e  h a v e  s h o w n  t h a t  t he  L a p l a c e  t e c h n i q u e  p r o v i d e s  a m e a n s  for  in tegra l  r e d u c t i o n  
by r e m o v i n g  the  c a n o n i c a l  c o n s t r a i n t  in M P 2  a n d  a l l o w i n g  the  use of  l oca l i zed  
orb i ta l s .  T h i s  r educes  t h e  n u m b e r  o f  s ign i f ican t  c o n t r i b u t i o n s  to  t he  c o r r e l a t i o n  
energy ,  t hus  i n c r e a s i n g  the  spars i ty  o f  the  in t eg ra l  a r r ays  a n d  a l l o w i n g  s t o r a g e  
r e q u i r e m e n t  r educ t ions .  T h o u g h  ex t ra  w o r k  is r equ i red ,  this  is m o r e  t h a n  offset by  
the  sav ings  in s t o r a g e  r e q u i r e m e n t .  
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Note added in proof 
A simiiar paper by Rauhab and Pulay was submitted to ChemicaI Physics Letters after our work was 
submitted. 
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